在低溫至高溫的寬溫區(qū)范圍惡劣環(huán)境下,永磁電機電磁參數(shù)變化很大,材料發(fā)生非線性變化,電磁場、溫度場、流體場、應(yīng)力場等各個物理場之間耦合關(guān)系更加復(fù)雜,在正常環(huán)境下可以忽略的多物理場耦合關(guān)系變得不可忽略,成為關(guān)鍵的技術(shù)難題 。
永磁電機的鐵心損耗、風(fēng)摩損耗、電機溫升不但與環(huán)境溫度和壓強密切相關(guān),而且相互影響。在真空環(huán)境中,散熱條件特殊,與相毗鄰部件的形狀及表面屬性相關(guān),熱輻射與表面溫度成非線性關(guān)系。真空至高壓強的變化影響應(yīng)力和材料特性變化,使得電機的多物理場建模難度增大。因此惡劣環(huán)境下永磁電機內(nèi)各物理場耦合關(guān)系非常復(fù)雜,研究各物理量和物理場的耦合關(guān)系及其動態(tài)變化規(guī)律非常困難 。
永磁電機的多物理場分析方法以數(shù)值解析法和有限元分析為主。在數(shù)值解析方面,通用的建模方法有傳統(tǒng)矩陣法、鍵合圖法、聯(lián)結(jié)法、網(wǎng)絡(luò)法等 。鐘掘院士等提出了對復(fù)雜機電系統(tǒng)進行全局耦合分析及耦合并行設(shè)計的基本理論 。
但是數(shù)值解析法在耦合建模和求解仍存在較多問題,由于假設(shè)條件和忽略因素過多,導(dǎo)致計算精度不夠。在有限元分析方面,眾多 CAD /CAE 軟件公司,如 Ansys、Flux、SIMULIA、UGS 等開發(fā)多物理場耦合計算工具,電磁計算的精度和效率逐步提高。重點關(guān)注數(shù)值模型、模型計算、實驗調(diào)查,其中包括電機多物理場分析。
同時,在分析含有外電路的永磁電機時,還需結(jié)合場路耦合分析,妥善處理非線性電路分析中仿真步長與計算量間的矛盾 。由此可見,由于耐高溫電機內(nèi)耦合物理場多、耦合關(guān)系復(fù)雜、環(huán)境邊界復(fù)雜,現(xiàn)有的耦合場建模與解耦計算方法有待進一步改進。